Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Immunol ; 13: 907343, 2022.
Article in English | MEDLINE | ID: covidwho-1933692

ABSTRACT

Background: Despite the high level of protection against severe COVID-19 provided by the currently available vaccines some breakthrough infections occur. Until now, there is no information whether a potential risk of a breakthrough infection can be inferred from the level of antibodies after booster vaccination. Methods: Levels of binding antibodies and neutralization capacity after the first, one and six month after the second, and one month after the third (booster) vaccination against COVID-19 were measured in serum samples from 1391 healthcare workers at the University Hospital Essen. Demographics, vaccination scheme, pre-infection antibody titers and neutralization capacity were compared between individuals with and without breakthrough infections. Results: The risk of developing an Omicron breakthrough infection was independent of vaccination scheme, sex, body mass index, smoking status or pre-existing conditions. In participants with low pre-infection anti-spike antibodies (≤ 2641.0 BAU/ml) and weaker neutralization capacity (≤ 65.9%) against Omicron one month after the booster vaccination the risk for developing an Omicron infection was 10-fold increased (P = 0.001; 95% confidence interval, 2.36 - 47.55). Conclusion: Routine testing of anti-SARS-CoV-2 IgG antibodies and surrogate virus neutralization can quantify vaccine-induced humoral immune response and may help to identify subjects who are at risk for a breakthrough infection. The establishment of thresholds for SARS-CoV-2 IgG antibody levels identifying "non"-, "low" and "high"-responders may be used as an indication for re-vaccination.


Subject(s)
Antibody Formation , COVID-19 , Antibodies, Viral , COVID-19/prevention & control , Humans , Immunization, Secondary , SARS-CoV-2
2.
Nat Commun ; 12(1): 5376, 2021 09 10.
Article in English | MEDLINE | ID: covidwho-1402068

ABSTRACT

Natural killer (NK) cells are important early responders against viral infections. Changes in metabolism are crucial to fuel NK cell responses, and altered metabolism is linked to NK cell dysfunction in obesity and cancer. However, very little is known about the metabolic requirements of NK cells during acute retroviral infection and their importance for antiviral immunity. Here, using the Friend retrovirus mouse model, we show that following infection NK cells increase nutrient uptake, including amino acids and iron, and reprogram their metabolic machinery by increasing glycolysis and mitochondrial metabolism. Specific deletion of the amino acid transporter Slc7a5 has only discrete effects on NK cells, but iron deficiency profoundly impaires NK cell antiviral functions, leading to increased viral loads. Our study thus shows the requirement of nutrients and metabolism for the antiviral activity of NK cells, and has important implications for viral infections associated with altered iron levels such as HIV and SARS-CoV-2.


Subject(s)
Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Retroviridae Infections/immunology , Animals , Bone Marrow , COVID-19 , Cytokines , HIV , HIV Infections , Large Neutral Amino Acid-Transporter 1/genetics , Large Neutral Amino Acid-Transporter 1/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria , Retroviridae , Retroviridae Infections/virology , SARS-CoV-2 , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL